





















































































































































































































































































































































é(l eCheckout System - Web Services Specification Reference

The eCheckout Process

Once the WPS redirects the end user to the redirect URL eCheckout will take over control.
The eCheckout process involves five (5) steps and one possible (1) exception.

Step 1: Select Payment Method

eCheckout displays the ‘Select Payment Method’ page. The end user selects the desired
payment method. Two payment methods are available:

1. Credit Card
2. Check (EFT)
Two (2) action buttons are available on this page:
e Cancel. The end user is returned to the WPS ‘cancel URL'.
e Next. The end user is sent to a page to enter the payment information.

Note: If the WPS is configured to DO NOT accepts checks - this configuration will only be
available to existing WPS that do not accept checks; the Department of Revenue’s preference
is that every WPS would accept both, checks and credit cards - then eCheckout will skip ‘Step
4’ and send the user directly to the credit card information collection page - See ‘Step 2: Provide
Payment Details’.

Input Validation
When the end user clicks the ‘Next’ button eCheckout validates that an option was selected. If

no option is selected the ‘Select Payment Method’ page is redisplayed with an error message
indicating that an option should be selected.

Step 2: Provide Payment Details

After the end user selects the desired payment method eCheckout displays a page to collect
the credit card or check information.

Three (3) action buttons are available on these two (2) pages:
e Back. The end user returns to the ‘Select Payment Method’ page.
* Reset/Clear. All input fields are cleared and the page is redisplayed.
* Next. The end user is sent to a page to verify the order information.
Input Validation
When ‘Next’ is clicked eCheckout confirms that all mandatory fields are populated and that

valid values are entered for all fields. If there are any validation issues the page is redisplayed
with messages for each invalid field.

10/28/2010 Proprietary and Confidential EKI/City of Chicago Page 8 of 30



eki

eCheckout System - Web Services Specification Reference

Step 3: Verify Order (before payment)

After validating the payment information eCheckout displays a page with all order and
payment details. The end user clicks *"Submit Payment” to tender the payment.

For each ‘Item’ in the order eCheckout will display the following information that was provided
by the WPS during the collect payment call: ‘Item Name’, ‘Item Description’, ‘Quantity’ and

‘Amount’.

Two (2) action buttons are available on this page:

Edit Payment Information. The end user returns to the Check or Credit Card
‘Payment Information’ page.

Submit Payment. The payment is submitted for authorization and approval.

Step 4: Submit Payment

When the end user clicks ‘Submit Payment’ eCheckout sends the payment to the City’s
Payment Engine service. From there it goes on to either the credit card or EFT authorizer. There
are three possible outcomes:

cl

Payment Approved

If the payment is approved the end user is redirected back to the originating website
and eCheckout sends the originating website the payment confirmation details. The
transaction is complete and the eCheckout process is finished. The originating website
handles all post-payment actions (presenting a ‘Thank You/Receipt’ page, sending a
receipt email, etc.).

Payment Denied

Payment submissions can be denied for a number of reasons: invalid card or EFT
information and insufficient funds available are two common reasons.

If the payment is denied the end user is sent to the ‘Payment Information’ page with a
message indicating that the payment was rejected. A general reason for the rejection
may be provided (specifics are masked to prevent fraudulent activity) along with a
suggestion to review the payment details and try again.

The end user can correct any mistakes in the payment details and resubmit the
payment, change the payment details (use a different credit card or checking account),
or go back to the Select Payment Method page and change the type of payment being
tendered. If the second payment submission is rejected, the end user returns to the
Payment Information page and can try again. This loop can be repeated until the
payment is accepted or until the end user cancels the order or abandons the process.

Payment Processing Error

If an unexpected error occurs during the payment process —this could be a technical
problem, a service availability problem, a timeout or other exception- eCheckout
redirects the end user back to the originating WPS and included an error code and
message with information about the problem. These types of errors are only generated
when the full round-trip message cannot be completed or is taking an unacceptably
long period of time.

10/28/2010

Proprietary and Confidential EKI/City of Chicago Page 9 of 30



éa eCheckout System - Web Services Specification Reference

Step 5: Return back to WPS

The eCheckout process is completed once control is returned back to the WPS. Sections below
describe the details of the four (4) possible situations when eCheckout will return control back to
the WPS,

1. Payment Approved

After a payment is approved eCheckout will redirect the end user back to the WPS using the
‘return URL’ provided during the collect payment operation call. The response to the WPS is
returned in key/value pairs as an HTTP GET (post back). Table 1 below describes the data that is
returned back to WPS.

Example of a successful transaction (where return.aspx is the return URL):

https://mydomain.com/return.aspx?successful=true&orderld=632819&errorCode=0008&errorM
essage=Success&transactionld=002000203028&sessionld=ddc2e76644e8dde7308d42606f7f7e74
& transactionDatetime=20100707180257

Attribute Description

successful Required This is the success or failure code:
true = Success
false = Failure

errorCode Required The error code if successful is false. Success has the value “000”

errorMessage Required The error message if successful is false. Success has the value
“Success”

orderld Required The id that uniquely identifies the order within the client WPS and that
was provided during the initial service call.

sessionld Optional The unique session identifier for the customer user on the WPS that
was provided during the initial service call.

transactionld Optional The transaction ID from eCheckout. .

transactionDateTime | Optional The transaction date & time from the Payment Engine formatted as
‘YYYYMMDDHHMISS’

Table 1 - Data Returned in ‘return’ URL

2. Payment Processing Error

If eCheckout cannot communicate with the Payment Engine or if it encounters any other
critical error then the end user is redirected back to the WPS ‘return URL’ with an error message.
Attributes in Table 1 are returned back to WPS. In these situations the successful attribute is
set to false and the errorCode and errorMessage attributes contain the code and description of
the error. Table 2 below describes the combination of error codes and error messages that could
be returned by eCheckout when redirecting the end user to the WPS ‘return URL’ due to an
error.

Example of an unsuccessful transaction (where return.aspx is the ‘return URL'):

https://mydomain.com/return.aspx?successful=faise&orderIld=6328198&errorCode=1108&error
Message=PaymentEngineNotAvailable&sessionld=ddc2e76644e8dde7308d42606f7f7e74

10/28/2010 Proprietary and Confidential EKI/City of Chicago Page 10 of 30



m eCheckout System -~ Web Services Specification Reference

Error Code Error Message

001 Exception processing request. Please contact eCheckout support team.
010 Payment Engine not available
011 Timeout

Table 2 — Return to WPS ‘return URL’ Error Codes and Messages

3. Payment/Checkout Process Takes Too Long to Checkout

To prevent unlimited checkout sessions, end users are given 10 minutes to complete the check
out. After 10 minutes, if the end user has not completed the transaction, the session will expire
and the end user will is redirected back to the WPS ‘return URL’ page with a timeout error (code
011).

4. Payment/Checkout Process Cancelled

If the end user cancels the eCheckout process -by clicking the ‘Cancel’ button on the

-‘Payment Method Selection’ page~- then the user is redirected back to the WPS using the ‘cancel

URL’ provided during the collect payment service call. Table 3 below describes the data that is
returned back to WPS.

Example of a cancel transaction (where cancel.aspx is the cancel URL):

https://mydomain.com/cancel.aspx?orderld=632819&&sessionld=ddc2e76644e8dde7308d426
06f7f7e74

Attribute Description

ordered Required The id that uniquely identifies the order within the client WPS
and that was provided during the initial service call.

sessionld Optional The unique session identifier for the customer user on the WPS
that was provided during the initial service call.

Table 3 = Data returned on ‘cancel’ URL

Exception 1: Payment/Checkout Process Abandoned

If the end user abandons the eCheckout process -by closing a browser or navigating to
another website- then eCheckout has no way to notify the client WPS that the end user has
terminated the process. It therefore ends its internal user session after the 10 minutes timeout
has expired.

The WPS Process after calling eCheckout

After calling eCheckout to collect a payment a WPS will wait for a call back from eCheckout
and should be prepared to handie the following post-payment actions:

10/28/2010 Proprietary and Confidential EKI/City of Chicago Page 11 of 30



m eCheckout System - Web Services Specification Reference

Payment Successful

After a successful payment, the eCheckout application sends the end user back to the
originating website, along with information about the transaction - Please refer to ‘1. Payment
Approved’ for details.

The WPS should verify that the ‘transactionId’ attribute that is part of the ‘return’ URL has
the same value as the ‘transactionld’ attribute provided by eCheckout as part of the Collect
Payment Response - Please refer to ‘Table 6 —~Collect Payment Response data type’ for details.

In the event that the ‘transactionld’ attributes don’t match the originating website will
assume that the user intended to circumvent the system and as such take the appropriated
actions - e.g. flag transaction as fraudulent, notify eCheckout support team, et cetera.

After verifying the ‘transactionId’ the originating website can take the appropriate post-
payment action: display an order receipt page, send an email receipt or other similar actions.

Payment Processing Error

If there was an error during the payment process and the eCheckout application can convey
these results back to the originating website, it directs the end user back to the ‘return URL’ page
in the originating application and sends any error information to the originating website - Please
refer to ‘2. Payment Processing Error’ for details.

The originating website normally displays the message “We're sorry, but your payment cannot

be processed at this time.” along with any other comments specific to the application (“Please try
again later”, “Save your order information and try again later”, etc.).

Payment/Checkout Process Cancelled

If the payment attempt was denied and the end user elects to return to the originating
website, the eCheckout application sends the user back to the ‘cancel URL’ on the originating
website —- Please refer to ‘4. Payment/Checkout Process Cancelled’ for details.

Payment Timeout

If the eCheckout application timeout threshold is exceeded, a response to this effect is sent to
the originating website and the originating website should act accordingly ~ Please refer to ‘3.
Payment/Checkout Process Takes Too Long to Checkout’ for details.

No Response from eCheckout

In circumstances where the end user abandons the eCheckout process or eCheckout is
unable to respond -this would normally be the result of a technical issue such as a network
problem, a server crash, a software failure or other problems of this sort- then eCheckout will
not notify the client WPS.

Client systems should be designed to anticipate this rare but possible outcome, and handle end
users appropriately. Information about the customer and the transaction should be saved before
calling the eCheckout application. Having a timeout setting of 5 minutes, for example, allows the
website to wait 5 minutes for a response from eCheckout before ending a user session and then
updating the status of any pending transactions that have not received a response.

10/28/2010 Proprietary and Confidential EKI/City of Chicago Page 12 of 30




m eCheckout System — Web Services Specification Reference

2.2. Report Revenue

WPS clients use this service to post revenue into Revenue Accounting. After receiving
confirmation of a successful payment from eCheckout and clearing/updating the receivable the
WPS calls this service to post the payment into Revenue Accounting.

Figure 2 below depicts the interaction between a Web Payment Systems and eCheckout for
reporting revenue.

After accepting the request eCheckout will immediately try to post the payment into
Revenue Accounting. There are three (3) possible outcomes:

1. Posting is successful. In this case eCheckout will return back to the WPS the
posting transaction ID and date/time provided by Revenue Accounting.

2. Posting failed due to error. In this case eCheckout will return back to the WPS an
error code indicating the nature of the problem. eCheckout will NOT retry to post this
transaction.

3. Posting is pending due to unavailability of Revenue Accounting. In this case
eCheckout will return back to the WPS a response indicating that it will retry to post
the transaction at a later time. In order to verify successful posting the WPS should
invoke the get payment operation at a later time.

WPS intending to use the report revenue operation need to make sure that, when invoking the
collect payment operation, the receivable type attribute is set for each item that constitutes the
order. eCheckout will verify that receivable type is set for each item in the order and reject the
report revenue request if this condition is not satisfied.

Note: The Revenue Accounting team will provide the receivable type attribute values.
Invalid receivable types will resuit in Revenue Accounting rejecting the report revenue/
payment posting request.

10/28/2010 Proprietary and Confidential EKI/City of Chicago Page 13 of 30



éa eCheckout System - Web Services Specification Reference

Update/Clear
Receivable

Receipt Page

1. Report Revenue 6. Report Revenue
Web Service Request Web Service Response

Service Bus

2 Repo;t Revenue IS. Report Reverue
7. Retry if Unavailable Web Service Request Web Service Response

eCheckout Services

eCheckout

3. Post Payrlnent 4, Post Payr[nsnt
Web Service %equest Web Service Rlequest

Revenue Accounting
Services

Figure 2 — Report Revenue Interaction

2.3. Get Payment

WPS will use this service when they need to obtain detailed information for a successful
payment or when they need to establish the status of a submitted order.

Figure 3 below depicts the interaction between a Web Payment Systems and eCheckout for
getting detailed information for a payment/order.

If eCheckout accepts the request then the response sent back to the WPS will include the
current status of the order along with the detailed information if the payment was approved -
Please refer to ‘4.3 Get payment’ for details.

10/28/2010 Proprietary and Confidential EKI/City of Chicago Page 14 of 30



eCheckout System - Web Services Specification Reference

Batch Processing
Utility Functions

1. Get Payment 5. Get Payment
Web Service Request Web Service Response

Service Bus

T I
2. Get Payment 4. Get Payment
Web Service Request Web Service Response

h 4

eCheckout
Services

eCheckout

5. Get Payment Status
(if needed)
A 4

PE Services

Services

Figure 3 - Get Payment Interaction

An order can have any of the statuses listed below. Figure 4 depicts the different statuses and
the relationships between them.,

CA - Collect Payment Accepted. A Collect Payment Request was accepted.

CI - Collect Payment Invalid. A Collect Payment Request was not accepted due to
ERRORs.

CP - Collection in Progress. Order payment collection is in progress.

C - Cancelled. Order was cancelled.

S - Submitted. Payment was submitted to Payment Engine (PE) for processing.
A - Approved. Payment collected (Approved by PE).

D - Denied. Payment denied by Payment Engine (PE).

E - Exception. Payment exception when calling Payment Engine (PE).

PP - Posting in Progress. Posting to Revenue Accounting is in Progress.

10/28/2010

Proprietary and Confidential EKI/City of Chicago Page 15 of 30



eCheckout System — Web Services Specification Reference

PR - Posting Waiting for Retry. Waiting for Posting to Revenue Accounting to be
retried at a later time.

PE - Posting Exception. Posting into Revenue Accounting failed (Unrecoverable).
P - Posted. Posting Successful (Payment posted into Revenue Accounting).

RP - Reverse in Progress. Reverse is in Progress.

RE - Reverse Exception. Reverse into PE failed (Unrecoverable).

R - Reversed. Reversal Successful (Returned or Voided in PE).

Redirect

from WPS Cancelled

Collection
Request

Payment
Submitted
Cancelled

Denied

Payment
Exception
(E)—==

S
b
Posting >
; ) Reverse
Exception <& Excepti on
Posting Rev. Acc. Revenue Report
Exception Unavailable Request A Reverse RP Reverse
\_/  Request Accepted
Reverse
Accepted Request
Post . :
Accepted p Reverse
Request
Reverse
Request

Figure 4 - Order/Payment State Chart

2.4. Reverse Payment

WPS will use this service when they need to reverse a payment. eCheckout will validate the
request and then submit the request to the Payment Engine for processing. Payment Engine will
reverse the payment using the appropriate method, either a void for transactions that have not
yet been settled or a return or refund for transactions that have been settled.

When performing a reversal, the client should ensure that the state of the order/payment to be
reversed is Approved (A) or Posted (PP, PE, or P). Any other state will result in a rejected reversal
request. To find out if an order/payment has been successfully reversed, the WPS should look for
a state of Reversed (R) returned when calling the get payment service.

10/28/2010

Proprietary and Confidential EKI/City of Chicago Page 16 of 30



m eCheckout System — Web Services Specification Reference

Figure 5 below depicts the interaction between a Web Payment Systems and eCheckout for
reversing an order/payment.

Batch Processing
Utility Functions

1. Reverse Payment 5. Reverse Payment
Web Service Request Web Service Response

Service Bus

1 li
2. Reverse Payment 4. Reverse Payment
Web Service Request Web Service Response

eCheckout
Services

eCheckout

3. Reverse Payment
Web Ser\cce Request

PE Services

Services

I

Figure 5 — Reverse Payment Interaction

10/28/2010 Proprietary and Confidential EKI/City of Chicago Page 17 of 30



m eCheckout System - Web Services Specification Reference

3. Service Interface

The eCheckout System Service exposes two core operations and two support operations
that can be invoked by a Web Payment Systems:

Core Operations:

1. Collect payment (collectPayment)
2. Report revenue (reportRevenue)

Support Operations:

1. Get payment (getPayment)
2. Reverse payment (reversePayment)

3.1. Implementation

The eCheckout System Service is implemented as a SOAP web service only available over
HTTPS.

3.2. Dependencies

The eCheckout System Service depends on the Payment Engine and Revenue
Accounting services.

3.3. Logic Architecture Diagram

Ap;’l'lg‘; i »  Sarvice Bus (ALSB)

eCheckout Services
(WLS)

I

eCheckout System
S

Ll

Payment Engine Revenue Accounting
Services Services
(WLS) (Revenue)

eCheckout System

Figure 6 —-Logical Architecture

10/28/2010 Proprietary and Confidential EKI/City of Chicago Page 18 of 30



m eCheckout System - Web Services Specification Reference

3.4. Security
The eCheckout System Service is secured using three different types of security:
1. Transport-Level Security. WPS will invoke the web service using SSL to secure the

connection between the client application and the Web Service.

2. Access Control Security. The WPS client application will authenticate itself, using the
eCheckoutUserID and eCheckoutPassword tokens provided by DoIT, to the web
service when the client invokes one of its operations.

3. Message-Level Security. The SOAP messages between the WPS client application and
the web service it is invoking should be digitally signed using the eCheckoutUserID and
eCheckoutPassword tokens provided by DolIT,

Failure to comply with any of these 3 types of security when invoking a service on eCheckout
will result in the rejection of the request by eCheckout.

3.5. WSDL
QA ALSB: https://webappsqa.cityofchicago.org/eCheckoutService?WSDL

Production ALSB: https://webapps.cityofchicago.org/eCheckoutService?WSDL

10/28/2010 Proprietary and Confidential EKI/City of Chicago Page 19 of 30



eki

eCheckout System - Web Services Specification Reference

4. Service Operations

The eCheckout System Service implements the four (4) operations described in the sections
below.

4.1. Collect Payment

WPS clients use this service to start a payment collection. The WPS calls the collectPayment
operation passing the required information using a ‘Collect Payment Request’ data type.
eCheckout will return back a ‘Collect Payment Response’ data type indicating if the request was
accepted or not.

Collect Payment Request

When invoking the collectPayment operation the WPS will provide the required information
by passing a ‘Collect Payment Request’ data type. Table 4 describes the fields on the ‘Collect

Payment Request’ data type.

Attribute

Mandatory/

Optional

Description

returnURL String Mandatory The https URL on the calling WPS that can
process the payment success/error action.
cancelURL String Mandatory The https URL on the calling WPS where
the user is redirected if the payment is
cancelled.
sessionld String Optional The unique session identifier for the user
Alphanumeric on the WPS,
clientId String Mandatory Unique ID of the invoking WPS to be
Alphanumeric provided by DoIT.
Maximum 10 chars
orderld String Mandatory A value that uniquely identifies the order
Alphanumeric within the client WPS. eCheckout requires
Maximum 10 chars that the client id and client order number
be a unique pair.
customerFirstName | String Mandatory First name of the customer making the
Alpha. Max 30 chars payment.
customerLastName | String Mandatory Last name of the customer making the
Alpha. Max 30 chars payment.
customerEmail String Optional Email of the customer. If provided then
Alpha Payment Engine will send a confirmation
Maximum 64 chars email upon payment confirmation
paymentAmount Double Mandatory The total amount to be paid. Sum of
Two decimals amounts from line items.
paymentltems PaymentItem Mandatory The List of Items that constitute the
-see description below- payment to be processed.

Table 4 —-Collect Payment Request data type

10/28/2010

Proprietary and Confidential EKI/City of Chicago

Page 20 of 30




éa eCheckout System - Web Services Specification Reference

Table 5 below describes the ‘Payment Item’ data type.

Description

Attribute Mandatory

/Optional

id String Mandatory The line item receivable id, identification id
Alphanumeric, Max 10 chars or charge id.
name String Mandatory Line item name.
Alphanumeric. Max 30 chars
description String Mandatory Line item description.
Alphanumeric. Max 80 chars
amount Double Mandatory Line Item amount.
Two decimals
quantity Integer Mandatory Line Item quantity.
capsCode String Line item caps code supplied for this line
Alphanumeric. Max 4 chars item (Issued by RECAPS).
receivableType | String Optional/ The receivable type on the Revenue
Mandatory if | Accounting system. If the WPS intends to
reporting report revenue through eCheckout and is
revenue configured as such then this attributed will
through be required. Revenue Accounting will

eCheckout | provide this attribute.

Table 5 - Payment Item data type

Collect Payment Response

eCheckout will validate the request — see validation rules below - and return back a ‘Collect
Payment Response’ data type. Table 6 below describes the fields on the ‘Collect Payment

Response’ data type.

Attribute Mandatory Description
/Optional
successful Boolean Mandatory True or false indicating whether eCheckout
accepted the payment request or not.
errorCode String Mandatory The error code if successful is false.
3 numbers Success has the value “000".
errorMessage String Mandatory The error message if successful is false.
Alphanumeric Success has the value “Success”.
securityToken String Optional The security token.
Alphanumeric. Max 10 chars
redirectURL String Optional The https URL where the WPS will redirect
Alphanumeric the user to.
transactionld String Optional The eCheckout transaction id.
Numeric

Table 6 —Collect Payment Response data type

10/28/2010 Proprietary and Confidential EKI/City of Chicago Page 21 of 30



m eCheckout System ~ Web Services Specification Reference

Validation
eCheckout will validate the request using the following rules:

e returnURL is not empty, it follows a "~https://(.*)$" pattern and it has a maximum of
356 chars.

* cancelURL is not empty, it follows a "~https://(.*)$" pattern and it has a maximum of
356 chars.

s sessionld is not empty and it has a maximum of 128 chars.

e clientld is not empty, it has a maximum of 10 chars, and the client is enable to use
eCheckout.

o orderld is not empty and it has a maximum of 10 chars.
¢ customerFirstName is not empty and it has a maximum of 30 chars.
o customerLastName is not empty and it has a maximum of 30 chars.

e paymentAmount is not empty, it's more than 0, it has no more than two decimals and
it’s equal to the sum of the payment items amount.

e paymentItems is not empty. There should be at least one item. For each item the
following rules will be applied:

o id is not empty and it has a maximum of 10 chars.

o name is not empty and it has a maximum of 30 chars.

o description is not empty and it has a maximum of 80 chars.

o amount is not empty, it's more than 0 and it has no more than two decimals.
o gquantity is not empty, it's an integer, and it’s more than 0.

o capsCode is not empty and it has a maximum of 4 chars.

o receivableType is not empty if WPS is configured to report revenue through
eCheckout.

Error Codes and Messages

If eCheckout doesnt accept the collect payment request it will return ‘false’ on the
successful attribute of the ‘Collect Payment Response’ data type and it will indicate the error
type by populating the errorCode and errorMessage attributes. Table 7 below describes the
combination of error codes and error messages to be returned by eCheckout.

Error Code Error Message

ECHECKOUT ERROR: Exception processing request. Please contact eCheckout
support team.

10/28/2010 Proprietary and Confidential EKI/City of Chicago Page 22 of 30



eCheckout System - Web Services Specification Reference

110 COLLECT PAYMENT ERROR: invalid return URL; must provide a valid (https)
returnURL with a maximum of 256 chars.

111 COLLECT PAYMENT ERROR: invalid cancel URL; must provide a valid (https)
cancelURL with a maximum of 256 chars.

112 COLLECT PAYMENT ERROR: invalid client Id; client Id is required. It must be an
alphanumeric value with a maximum of 10 chars.

113 COLLECT PAYMENT ERROR: invalid order Id; order Id is required. It must be an
alphanumeric value with a maximum of 10 chars.

114 COLLECT PAYMENT ERROR: invalid customer first name; customer first name is
required. It must be an alpha value with a maximum of 30 chars.

115 COLLECT PAYMENT ERROR: invalid customer last name; customer last name is
required. It must be an alpha value with a maximum of 30 chars.

116 COLLECT PAYMENT ERROR: invalid payment amount. It must be a numeric value
with a maximum of 2 decimals

117 COLLECT PAYMENT ERROR: missing payment items; must have at least one valid
item.

118 COLLECT PAYMENT ERROR: bad payment item; missing item identifier. It must be
an alphanumeric value with a maximum of 10 chars.

119 COLLECT PAYMENT ERROR: bad payment item; missing item name. It must be an
alphanumeric value with a maximum of 30 chars.

120 COLLECT PAYMENT ERROR: bad payment item; missing item description. It must be
an alphanumeric value with a maximum of 80 chars.

121 COLLECT PAYMENT ERROR: bad payment item; missing or invalid item quantity
{must be greater than zero).

122 COLLECT PAYMENT ERROR: bad payment item; missing or invalid item amount.

123 COLLECT PAYMENT ERROR: bad payment item; missing item caps code.

124 COLLECT PAYMENT ERROR: payment amount and items total amount don't match.

125 COLLECT PAYMENT ERROR: session Id is invalid. It must be an alphanumeric value
with a maximum of 128 chars.

126 COLLECT PAYMENT ERROR: successful or in-progress order already exists for given
Client Id and Order Id.

127 COLLECT PAYMENT ERROR: bad payment item; missing receivable type.,

128 COLLECT PAYMENT ERROR: invalid customer email; if provided customer email must
be an valid email with a maximum of 64 chars.

129 COLLECT PAYMENT ERROR: invalid client id or not enable to use eCheckout.

Table 7 - Collect Payment Response Error Codes and Messages

4.2. Report Revenue

WPS clients use this service to post revenue into Revenue Accounting. After receiving
confirmation of a successful payment from eCheckout and clearing/updating the receivable the
WPS calls the reportRevenue operation passing the required information using a ‘Report
Revenue Request’ data type. eCheckout will try to post the payment into Revenue Accounting
and return back a ‘Report Revenue Response’ data type indicating the outcome of the operation.

10/28/2010

Proprietary and Confidential EKI/City of Chicago Page 23 of 30




éﬁ eCheckout System ~ Web Services Specification Reference

Report Revenue Request

When invoking the reportRevenue operation the WPS will provide the required information
by passing a ‘Report Revenue Request’ data type. Table 8 describes the fields on the ‘Report
Revenue Request’ data type.

Attribute Mandatory/ Description
Optional

clientld String Mandatory Unique ID of the invoking WPS to be
Alphanumeric provided by DoIT.
Maximum 10 chars

orderid String Mandatory A value that uniquely identifies the order
Alphanumeric within the client WPS.
Maximum 10 chars

transactionld String Mandatory The transaction ID received from
Numeric eCheckout

Maximum 10 chars

Table 8 — Report Revenue Request data type

Report Revenue Response

eCheckout will validate the request -see validation rules below-, submit the payment to
Revenue Accounting, and return back a ‘Report Revenue Response’ data type with the outcome

of the operation. Table 9 below describes the fields on the ‘Report Revenue Response’ data type.

Attribute Mandatory/ Description
Optional
successful Boolean Mandatory True or false indicating whether
eCheckout accepted the Report
Revenue request or not.
errorCode String Mandatory The error code if successful is false.
3 numbers Success has the value “000".
errorMessage String Mandatory The error message if successful is false,
Alphanumeric Success has the value “Success”.
revenueReportingTransactionld | String Optional
revenueReportingDatetime String Optional

Table 9 - Report Revenue Response data type

Three (3) possible outcomes can be included in the ‘Report Revenue Response’ data type:

1. Posting is successful. In this case eCheckout will return back:
o successful = true
o revenueReportingTransactionld = Revenue Accounting transaction id

o revenueReportingDatetime = Revenue Accounting transaction date/time

10/28/2010 Proprietary and Confidential EKI/City of Chicago Page 24 of 30




éﬁ eCheckout System — Web Services Specification Reference

2. Posting failed due validation error or posting error. In this case eCheckout will -
NOT retry to post the transaction at a later time. It will return back:

o successful = false

o errorCode = error code indicating nature of error

o errorMessage = error message indicating nature of error
3. Posting is pending due to unavailability of Revenue Accounting. In this case
eCheckout will retry to post the transaction at a later time. The WPS should check at a
later time the status of the posting by invoking the get payment operation. eCheckout
will return back:
o successful = false
o errorCode = 220
o errorMessage = "REPORT REVENUE ERROR: posting pending. eCheckout will
retry. The getPayment operation should be invoke later to obtain the status of
the posting.”
Validation
eCheckout will validate the request using the following rules:
e clientId is not empty, it has a maximum of 10 chars, and is a valid client id.
e orderld is not empty and it has a maximum of 10 chars.

e transactionld is not empty and it has a maximum of 10 chars.

o orderld and transactionId are a valid combination and the order/transaction is
approved.

e orderItems receivable type is set for each item.

Error Codes and Messages

If eCheckout doesn’t accept the report revenue request it will return ‘false’ on the successful
attribute of the ‘Report Revenue Response’ data type and it will indicate the error type by
populating the errorCode and errorMessage attributes. Table 10 below describes the
combination of error codes and error messages to be returned by eCheckout.

Error Code Error Message
001 ECHECKOUT ERROR: Exception processing request. Please contact eCheckout
support team.
210 REPORT REVENUE ERROR: invalid client Id; client Id is required. It must be an
alphanumeric value with a maximum of 10 chars.
211 REPORT REVENUE ERROR: invalid order Id; order Id is required. It must be an
alphanumeric value with a maximum of 10 chars.

10/28/2010 Proprietary and Confidential EKI/City of Chicago Page 25 of 30




m eCheckout System — Web Services Specification Reference

212 REPORT REVENUE ERROR: invalid transaction Id; transaction Id is required. It must
be a numeric value with a maximum of 10 chars.

213 REPORT REVENUE ERROR: invalid client Id or not enable to use eCheckout.

214 REPORT REVENUE ERROR: invalid order Id/transaction Id combination.

215 REPORT REVENUE ERROR: request for posting in progress.

216 REPORT REVENUE ERROR: order already posted into Revenue Accounting.

217 REPORT REVENUE ERROR: order Id/transaction Id not approved.

218 REPORT REVENUE ERROR: line item is missing receivable type. Posting of this order
cannot be accomplished.

219 REPORT REVENUE ERROR: rejected by Revenue Accounting. Posting of this order
cannot be accomplished.

220 REPORT REVENUE ERROR: posting pending. eCheckout will retry. The getPayment
operation should be invoke later to obtain the status of the posting.

Table 10 - Report Revenue Response Error Codes and Messages

4.3. Get payment

WPS will use this service when they need to obtain detailed information for a successful
payment or when they need to establish the status of a submitted order. The WPS calls the
getPayment operation passing the required information using a ‘Get Payment Request’ data
type. eCheckout will return back a ‘Get Payment Response’ data type indicating if the request
was accepted or not and providing the payment details.

Get Payment Request

When invoking the getPayment operation the WPS will provide the required information by
passing a ‘Get Payment Request’ data type. Table 11 describes the fields on the ‘Get Payment

Reguest’ data type.

Attribute Mandatory/ Description
Optional

clientld String Mandatory Unique ID of the invoking WPS to be
Alphanumeric provided by DoIT.
Maximum 10 chars

orderld String Mandatory A value that uniquely identifies the order
Alphanumeric within the client WPS.
Maximum 10 chars

Table 11 - Get Payment Request data type

Get Payment Response

eCheckout will validate the request - see validation rules below - and return back a ‘Get
Payment Response’ data type. Table 12 below describes the fields on the ‘Get Payment Response’
data type.

10/28/2010 Proprietary and Confidential EKI/City of Chicago Page 26 of 30



eCheckout System - Web Services Specification Reference

Attribute

successful

Boolean

Mandatory/
Optional

Mandatory

Description

True or false indicating whether
eCheckout accepted the Report
Revenue request or not.

errorCode String Mandatory The error code if successful is false.
3 numbers Success has the value “000”.
errorMessage String Mandatory The error message if successful is false.
Alphanumeric Success has the value “Success”.
orderld String Optional The id that uniquely identifies the order
Alphanumeric within the client WPS and that was
Max. 10 chars provided during the initial service call.
orderStatus Optional The status of the order
paymentMethod String Optional The payment method. It is one of the
Alpha following values:
Max. 2 chars CC - Credit Card
CH - Check
pan String Optional The masked credit card number or
Numeric checking number depending on the
Max. 16 chars payment method
name String Optional The card holder name or name on the
Alphanumeric account depending on the payment
method
routingNumber String Optional The masked routing number for a check
Numeric payment
Max. 9 chars
cardType String Optional The credit card type for a credit card
payment
approvalCode String Optional The approval code provided by the
Payment Engine
transactionid String Optional The eCheckout transaction id
Numeric
peTransactionld String Optional The transaction id provided by the
Numeric Payment Engine
peTransactionDateTime String Optional The transaction date and time provided
by the Payment Engine
amount Double Optional The payment amount
Two decimals
revenueReportingTransactionld | String Optional The revenue reporting posting
Alphanumeric transaction id provided by Revenue
Accounting
revenueReportingDatetime String Optional The revenue reporting posting
transaction date and time
reversalTransactionId String Optional The reversal transaction id provided by
Numeric the Payment Engine
Max. 10 chars
reversalDatetime String Optional The reversal transaction date and time

provided by the Payment Engine

Table 12 - Get Payment Response data type

10/28/2010

Proprietary and Confidential EKI/City of Chicago

Page 27 of 30




éa eCheckout System - Web Services Specification Reference

Validation
eCheckout will validate the request using the following rules:
e clientId is not empty, it has a maximum of 10 chars, and is a valid client id.

e orderld is not empty, it has a maximum of 10 chars, and it exists in eCheckout.

Error Codes and Messages

If eCheckout doesn't accept the get payment request it will return ‘false’ on the successful
attribute of the ‘Get Payment Response’ data type and it will indicate the error type by populating

the errorCode and errorMessage attributes. Table 13 below describes the combination of error
codes and error messages to be returned by eCheckout.

Error Code Error Message

Exception processing request. Please contact eCheckout support team.

310 GET PAYMENT ERROR: invalid client Id; client 1d is required. It must be an
alphanumeric value with a maximum of 10 chars.

311 GET PAYMENT ERROR: invalid order Id; order Id is required. It must be an
alphanumeric value with a maximum of 10 chars.

312 GET PAYMENT ERROR: invalid client Id or not enable to use eCheckout.

313 GET PAYMENT ERROR: invalid order Id; order doesn't exist in eCheckout.

Table 13 - Get Payment Response Error Codes and Messages

4.4. Reverse payment

WPS will use this service when they need to reverse a payment. eCheckout will validate the
request and then submit the request to the Payment Engine for processing. Payment Engine will
reverse the payment using the appropriate method, either a void for transactions that have not
yet been settled or a return or refund for transactions that have been settled.

When performing a reversal, the client should ensure that the state of the order/payment to be
reversed is Approved (A) or Posted (PP, PE, or P). Any other state will result in a rejected reversal
request. To find out if an order/payment has been successfully reversed, the WPS should look for
a state of Reversed (R) returned when calling the get payment service.

WPS call the reversePayment operation passing the required information using a ‘Reverse
Payment Request’ data type. eCheckout will return back a ‘Reverse Payment Response’ data
type indicating if the request was accepted or not and providing the reverse details.

Reverse Payment Request

When invoking the reversePayment operation the WPS will provide the required information
by passing a ‘Reverse Payment Request’ data type. Table 14 describes the fields on the ‘Reverse

Payment Request’ data type.

10/28/2010 Proprietary and Confidential EKI/City of Chicago Page 28 of 30



eCheckout System - Web Services Specification Reference

Attribute

clientld

String
Alphanumeric
Maximum 10 chars

Mandatory/
Optional

Mandatory

Description

Unique ID of the invoking WPS to be
provided by DoIT.

Maximum 64 chars

orderld String Mandatory A value that uniquely identifies the order
Alphanumeric within the client WPS.
Maximum 10 chars
transactionld String Mandatory The transaction ID received from
Numeric eCheckout
Maximum 10 chars
reasonCode String Mandatory Code for the reason behind the reversal.
Numeric Valid reason codes are:
Maximum 3 chars 001 -Technical Issue.
002 - Business Issue.
003 - User Issue.
comments String Optional An optional comment about the reversal

for tracking purposes.

Table 14 - Reverse Payment Request data type

Reverse Payment Response

eCheckout will validate the request - see validation rules below - and return back a ‘Reverse
Payment Response’ data type. Table 15 below describes the fields on the ‘Reverse Payment

Response’ data type.

Attribute

Mandatory

/Optional

Description

successful Boolean Mandatory True or false indicating whether eCheckout
accepted the Report Revenue request or
not.
errorCode String Mandatory The error code if successful is false.
3 numbers Success has the value “000”.
errorMessage String Mandatory The error message if successful is false.
Alphanumeric Success has the value “Success”.
reverseTransactionld | String Optional The reversal transaction ID provided by
Maximum 10 chars the Payment Engine
reverseDatetime String Optional The reversal transaction date and time

provided by the Payment Engine

Validation

Table 15 - Reverse Payment Response data type

eCheckout will validate the request using the following rules:

10/28/2010

Proprietary and Confidential EKI/City of Chicago

Page 29 of 30



eCheckout System — Web Services Specification Reference

e clientId is not empty, it has a maximum of 10 chars, and is a valid client id.

e orderld is not empty, it has a maximum of 10 chars, and it exists in eCheckout.

e transactionlId is not empty and it has a maximum of 10 chars.

e orderld and transactionld are a valid combination and the order/transaction is
approved (A) or posted (PP, PE, or P).

Error Codes and Messages

If eCheckout doesn’t accept the get payment request it will return ‘false’ on the successful
attribute of the ‘Reverse Payment Response’ data type and it will indicate the error type by

populating the errorCode and errorMessage attributes. Table 16 below describes the
combination of error codes and error messages to be returned by eCheckout.

Error Code

Error Message

Exception processing request. Please contact eCheckout support team.

410 REVERSE PAYMENT ERROR: invalid client Id; client Id is required. It must be an
alphanumeric value with a maximum of 10 chars.

411 REVERSE PAYMENT ERROR: invalid order Id; order Id is required. It must be an
alphanumeric value with a maximum of 10 chars.

412 REVERSE PAYMENT ERROR: invalid transaction Id; transaction Id is required. It
must be a numeric value with a maximum of 10 chars.

413 REVERSE PAYMENT ERROR: invalid client Id or not enable to use eCheckout.

414 REVERSE PAYMENT ERROR: invalid order Id/transaction Id combination.

415 REVERSE PAYMENT ERROR: request for reversing in ptogress.

416 REVERSE PAYMENT ERROR: order already reversed.

417 REVERSE PAYMENT ERROR: order Id/transaction Id not approved.

Table 16 - Reverse Payment Response Error Codes and Messages

10/28/2010 Proprietary and Confidential EKI/City of Chicago Page 30 of 30



ATTACHMENT THREE

USER MANAGEMENT SERVICES



EFPARTMENT OF

\yg/ INNOVATIONETECHNOLOGY

HARDIX BHATT » CHIEF INFORMATION OFFICER

City of Chicago
User Management Services

Version 2.1

Specification Reference

Provided By
Application Development and Support
Innovation & Technology
City of Chicago




DEPARTMENT OF

INNOVATIONESETECHNOLOGY

HaRDik OATT » CHIEF INFERMATION DFFICER

TABLE OF CONTENTS 2
REVISION HISTORY 3
1 INTRODUCTION 4
1.1 OBJECTIVE

1.2 AUDIENCE

2 SYSTEM OVERVIEW 5
2.1 DESCRIPTION 5
2.2 PURPOSE 5
2.3 SYSTEM DEPENDENCY 5
2.4 PREREQUISITES 5
3 SERVICE INTERFACE 6
3.1 IMPLEMENTATION 6
3.2 AUTHENTICATION 6
3.3 LOGIC ARCHITECTURE DIAGRAM 6
3.4 WSDL 7
3.5 OPERATIONS 7
USERMGMTSERVICES2 7
USERMGMTSERVICES2AD 10
3.6 AUTHORIZATION 12
3.7 ERROR CODES/MESSAGES 12
4 APPLICATION DOCUMENTATION AND SUPPORT 14

Prepared by Software Development, DolT Confidential and Proprietary of City of Chicago Page 2 of 14



DEPARTMENT aF

INNOVATION:

< TECHNOLOGY

CHIEr INFOARMATION OFFIDER

HARDIK BHATT »

Directory for internal users

Revision Date Author Notes
2.0 08/18/2009 | Diego Perez Mesa Initial version
2.1 06/24/2010 | Diego Perez Mesa Added functionality to support Active

Prepared by Software Development, DoIT

Confidential and Proprietary of City of Chicago

Page 3 of 14




DEPARTMENT arF

INNOVATIONESETECHNDOLOGY

HARDIE DHATT « CHIEF INFORMATION OFFIDER

1.1 Objective

The objective of this document is to describe the requirements and technical specifications for
an application to act as a client of the User Management Services.

1.2 Audience

The intended audience for this document includes application programmers for their client
applications. The document assumes prior knowledge of XML, SOAP, Web Services, and Java
API. This document doesn’t cover details implementation on client applications.

Prepared by Software Development, DolT Confidential and Proprietary of City of Chicago Page 4 of 14



DEFPARTMENT arF

INNOVATIONSTECHNOLOGY

HaROom BHATT o CHIEF (RFOAMATION OFFIDER

2.1 Description

User Management Services (UMS) was originally developed to provide reusable user and
group management functionality against the Enterprise Novell eDirectory directory for internal
facing applications -where users are City employees or consuitants- and public facing
applications.

In order to accommodate the City’s strategy of migrating employees and consultants to
Microsoft Active Directory this new version of the UMS provides reusable user and group
management functionality against both:

e Novell eDirectory for public and internal facing applications.
e Microsoft Active Directory for internal facing applications.

2.2 Purpose

The enterprise Novell eDirectory directory is intended for use by public facing applications
used by businesses and citizens. For compatibility purposes this new version of UMS also
provides functionality to access internal users -City employees or consultants- stored in Nove//

eDirectory.

The enterprise Microsoft Active Directory directory is intended for use by internal facing
applications where the users are City employees or consultants.

The User Management Services are provided to clients in order to:
e Insulate clients from coding directly with the LDAP API. '
e Enforce DoIT business rules.
¢ Insulate clients from changes in LDAP structure.

e Provide for centralized security to the LDAP server.

2.3 System Dependency
The User Management Services do not depend on any other services.

2.4 Prerequisites

A system administrator must create at least one application-specific group in the Enterprise LDAP
for the users of the application. If the users are for an external facing application, then the group
is to be created in the external branch of the LDAP directory. Internal-facing applications require
a group on the internal branch.

Prepared by Software Development, DoIT Confidential and Proprietary of City of Chicago Page S of 14



DEPARTMENT OF

INNOVATIONATECHNDLOGY

HARDIK BHATT s CHIEF IRFORMATION DOFFICER

3.1 Implementation

The User Management Services are implemented as a SOAP web service available over
HTTPS. UMS exposes two (2) services:

e UserMgmtServices2. To access external and internal users in Novell eDirectory.

e UserMgmtServices2AD. To access external in Novell eDirectory and internal users
Microsoft Active Directory.

3.2 Authentication

HTTP 1.1 Basic Authentication is required in order to access the User Management Services
methods.

3.3 Logic Architecture Diagram

Client
Application

Client
Application

——UsengmtServicesZ] UserMgmtServices2AD-

Service Bus (ALSB)

User Management web
service

(WLS)

Microsoft
Active
Directory

Novell
eDirectory

DolT Environment

Prepared by Software Development, DoIT Confidential and Proprietary of City of Chicago Page 6 of 14



\/é\/ INNOVATIONATECHNOLOGY

MARCIHE BHATYT o CHIEF IRFDRMATION OFFICER

3.4 WSDL

UserMgmtServices2:
QA: http://webappsga.cityofchicago.org/UserMgmtServices2?WSDL

Production: http://webapps.cityofchicago.org/UserMamtServices2?WSDL

UserMgmtServices2AD:
QA: http://webappsqa.cityofchicago.org/UserMgmtServices2AD?WSDL
Production: http://webapps.cityofchicago.org/UserMgmtServices2AD?WSDL

3.5 Operations

Keep in mind that operation names containing ‘external’ work against the portion of the
directory reserved for users/groups that reside outside the City’s firewall. ‘Internal’ operation
names should only be used for users/groups that reside inside the City’s firewall. This would
include City employees and internal consultants and vendors with VPN access.

UserMgmtServices2

This web service accesses external and internal users in Novell eDirectory. It currently
implements the following operations:

Name Description

assignExternalUserToGroup Assigns the given user as a member of the given group.
The User and group must already exist on the external
side of the directory.

assignInternalUserToGroup Assigns the given user as a member of the given group.
The User and group must already exist on the internal
side of the directory.

authenticateUser Authenticates the given user.

changeExternalUserEmail Changes the existing user’s email address to the one
provided. The email address is validated for the correct
format as part of this operation.

changeExternalUserPassword Changes the existing user’s password to the one
provided. The password is validated for the correct City
format standards as part of this operation.

changelnternalUserEmail Changes the existing user’'s email address to the one
provided. The email address is validated for the correct
format as part of this operation.

Prepared by Software Development, DolIT Confidential and Proprietary of City of Chicago Page 7 of 14




. DEPARTMENT OF
&

\/@\7 INNOVATIONASATECHNOLOGY

FHARDIN BHATT « CHIEF INFTDRMATION BFFICER

changelnternalUserPassword

Changes the existing user’s password to the one
provided. The new password is validated for the correct
City format standards as part of this operation.

createExternalGroup

Creates the given group on the external side of the
directory. The operation also verifies the group name is
unique within the entire directory (internal and external)
beforehand.

createExternalUser

Creates a new user on the external side of the directory.
Requires a user ID, password, first name, last name,
and email address. User ID, password, and email
address are validated for correct format before the user
can be created. The operation also verifies the user
name is unique within the entire directory (internal and
external) beforehand.

createlnternalGroup

Creates the given group on the internal side of the
directory. The operation also verifies the group name is
unique within the entire directory (internal and external)
beforehand.

createlnternalUser

Creates a new user on the internal side of the directory.
Requires a user ID, password, first name, last name,
and email address. User ID, password, and email
address are validated for correct format before the user
can be created. The operation also verifies the user
name is unique within the entire directory (internal and
external) beforehand.

externalUserSearch

Returns an array of external users whose names fuzzily
match the provided criteria

externalUserSearchByEmail

Returns an array of external users whose email
addresses fuzzily match the provided address.

getExternalUser

Returns the user data for the given existing external
user.

getGroupNamesForUser

Returns a list of group names that the given user ID
belongs to.

getinternalUser

Returns the user data for the given existing internal
user.

getPasswordStandardsDescription

Returns a text description of the City’s password
formatting standards. This text can be displayed on a
web registration page.

getUserIDStandardsDescription

Returns a text description of the City’s user ID

Prepared by Software Development, DoIT

Confidential and Proprietary of City of Chicago Page 8 of 14




’ DEPARTMENT

=

F

Y INNOVATIONSTECHNOLOGY

HARDIK BHATT » CHIEF INFEBRMATION OFriCER

formatting standards. This text can be displayed on a
web registration page.

getUsernamesForGroup Returns a list of user IDs that are members of the given
group.
getUsersForGroup Returns a list of users that are members of the given

group.

internalUserSearch

Returns an array of internal users whose names fuzzily
match the provided criteria

internalUserSearchByEmail

Returns an array of internal users whose email
addresses fuzzily match the provided address.

isGroupInLDAP Returns true of the given group name exists anywhere
in the directory.

isUserInGroup Returns true if the given user ID is a member of the
given group.

isUserInLDAP Returns true if the given user exists anywhere in LDAP.

removeExternalUser

Removes a given user from the external side of the
directory.

removeExternalUserFromGroup

Removes a given user from a given group membership.

removelnternalUser

Removes a given user from the internal side of the
directory.

removelnternalUserFromGroup

Removes a given user from a given group membership.

resetExternalUserPassword

For the given existing user, the operation auto
generates a new password and emails that password to
the email address that is already associated with user in
the directory.

resetInternalUserPassword

For the given existing user, the operation auto
generates a new password and emails that password to
the email address that is already associated with user in
the directory.

updatelnternalUserDeptNumber

Updates the user’s department number to the one
provided.

updatelnternalUserLastName

Updates the user’s last name to the one provided.

Prepared by Software Development, DoIT

Confidential and Proprietary of City of Chicago Page 9 of 14




EPARTMENT OF

HARCIK BHATY o CHIEF INFBRMATION DFFICER

\/3\} INNOVATIONSTECHNOLOGY

Note: Please check the WSDL link above for the exact input/output formats for each

operation.

UserMgmtServices2AD

This web service accesses external users in Novell eDirectory and internal users in Microsoft
Active Directory. It currently implements the following operations:

Description

assignExternalUserToGroup

Assigns the given user as a member of the given
group. The User and group must aiready exist on the
external side of Novell eDirectory.

assignlnternalUserToGroup

Assigns the given user as a member of the given
group. The User and group must already exist on
Active Directory directory.

authenticateUser

Authenticates the given user.

changeExternalUserEmail

Changes the existing user’s email address to the one
provided. The email address is validated for the
correct format as part of this operation.

changeExternalUserPassword

Changes the existing user's password to the one
provided. The password is validated for the correct
City format standards as part of this operation.

createExternalGroup

Creates the given group on the external side of the
directory. The operation also verifies the group name
is unique within the entire directory (internal and
external) beforehand.

createExternalUser

Creates a new user on the external side of the
directory. Requires a user ID, password, first name,
last name, and email address. User ID, password,
and email address are validated for correct format
before the user can be created. The operation also
verifies the user name is unique within the entire
directory (internal and external) beforehand.

externalUserSearch

Returns an array of external users whose names
fuzzily match the provided criteria

externalUserSearchByEmail

Returns an array of external users whose email
addresses fuzzily match the provided address.

getExternalUser

Returns the user data for the given existing external
user.

Prepared by Software Development, DoIT

Confidential and Proprietary of City of Chicago Page 10 of 14




DEPARTMENT OF

INNOVATIONSTECHNOLOGY

HARDIK BHATT » CHIEF INFOAMATION OFFICER

getExternalUsersForGroup

Returns a list of users that are members of the given
group.

getExternalUsersGroupNamesForUser

Returns a list of group names that the given user ID
belongs to.

getExternalUsersUserIDStandardsDes
cription ' :

Returns a text description of the City’s user ID
formatting standards. This text can be displayed on a
web registration page.

getExternalUsersPasswordStandardsD
escription

Returns a text description of the City’s password
formatting standards. This text can be displayed on a
web registration page.

getExternalUsersUsernameForGroup

Returns a list of user IDs that are members of the
given group.

getinternaiUser

Returns the user data for the given existing internal
user.

getInternalUsersForGroup

Returns a list of users that are members of the given
group.

getInternalUsersGroupNamesForUser

Returns a list of group names that the given user ID
belongs to.

getInternalUsersUsernameForGroup

Returns a list of user IDs that are members of the
given group.

internalUserSearch

Returns an array of internal users whose names
fuzzily match the provided criteria

internalUserSearchByEmail

Returns an array of internal users whose email
addresses fuzzily match the provided address.

isExternalGroupInLDAP

Returns true of the given group name exists
anywhere in eDirectory.

isExternalUserInGroup

Returns true if the given user ID is a member of the
given group.

isExternalUserInLDAP

Returns true if the given user exists anywhere in
eDirectory.

isInternaiGroupInLDAP

Returns true of the given group name exists
anywhere in Active Directory.

isInternalUserInGroup

Returns true if the given user ID is a member of the
given group.

Prepared by Software Development, DoIT

Confidential and Proprietary of City of Chicago

Page 11 of 14




Y INNOVATIONSTECHNOLOGY

HMARDIK BHATY o CHIEF IRIMRMATION EIFTiCER

’ DEFPARTMENT OF

isInternalUserInLDAP Returns true if the given user exists anywhere in
Active Directory.

removeExternalUser Removes a given user from the external side of
eDirectory.

removeExternalUserFromGroup Removes a given wuser from a given group
membership.

removelnternalUserFromGroup Removes a given wuser from a given group
membership.

resetExternalUserPassword For the given existing user, the operation auto

generates a new password and emails that password
to the email address that is already associated with
user in the directory.

Note: Please check the WSDL link above for the exact input/output formats for each
operation.

3.6 Authorization

Access control is at the operation level. Generally a client application will receive credentials
with proper authorization level based on whether the client application is external-facing or
internal-facing. Each client application must have its own credentials, which act as a “service
account” for the client application.

The service account should be created in one of the following groups:
» AtnServicesExternalApps
e AtnServicesInternalApps

3.7 Error Codes/Messages

The service can return the following error codes:

Error Code Description
-100 The User ID already exists in the directory.
-110 JNDI naming exception.
-120 LDAP exception.
-130 Validation exception.
-140 User ID not found in directory.

Prepared by Software Development, DolIT Confidential and Proprietary of City of Chicago Page 12 of 14



DEPARTMENT OFfF

@ INNOVATIONESETECHNOLOGY

v PARDIK BHATT « CHIEF NIDRMATION OFFICER

-150 Invalid password. The password does not meet City standards.

-160 Authentication failed.

-170 Invalid email address format. The email address does not meet
general standards.

-180 Group not found in directory,

-190 Group already exists in directory.

-200 Error occurred in the email process. The email process failed.

-210 Invalid User ID format. The User ID does not meet City standards.

-220 User already exists in the group.

-230 Invalid first name.

-240 Invalid last name.

-250 No search criteria.

-260 No matching email address.

-270 Email address matches mulitiple User IDs

-280 Email address doesn’t belong to User ID

-290 User not in group.

Prepared by Software Development, DolIT Confidential and Proprietary of City of Chicago Page 13 of 14




DEPARTMENT OF

INNOVATIONESTECHNOLOGY

HARD# BATT » CHIEF INFORMATION OFFICER

Please check the latest specification document and detailed technical documentation in the

city’s Sharepoint site at http://cocprojects/usermanagement. For any questions or comments,
please contact DoIT ADS team.

Note: If you don’t have Sharepoint access, please contact the application development team
share point admin for the access right.

Prepared by Software Development, DoIT Confidential and Proprietary of City of Chicago Page 14 of 14



